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Abstract

We present evidence, based on play-by-play data from the 2009/10 to the 2018/19 season of the National Bas-
ketball Association (NBA), that basketball scoring can be modeled by mathematics. We use logistic regression to
test hundreds of different in-game scenarios that could affect the likelihood of a player making a basket, such as
the amount of time left in the game, the score differential, and the defensive coverage. We demonstrate that certain
shots are more efficient than others, and show that the playing tendencies of teams and players have drastically
changed in the last 10 years.
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1 Introduction

This research is motivated by my immense passion for both
basketball and mathematics. This passion was nourished by
incredible people who have been supporting me especially
during these four years at Seattle University. This paper is the
result of continuous and unconditional assistance, encour-
agement, and love by the Math Department, my coaches and
my family.

1.1 What is basketball?

The goal of basketball is simple, its rules are well defined
and the results are easily quantifiable. Basketball is played
5-on-5, and each team tries to put the ball in the basket po-
sitioned at 10ft from the floor. Not every shot is worth the
same. In fact, if a player shoots the ball behind the 3 point
line (the “arc" ) and makes it, the shot will be worth 3 points.
A shot made from inside the arc is worth 2 points. If a player
is fouled in the attempt of shooting, he will have two un-
guarded shots from the free throw line. A game consists of 4
quarters of 12 minutes each, and for every possession a team
has 24 seconds to complete their action. The team that at the
end of the game has the most points wins the game.

1.2 Question

As we will see, there is an enormous amount of high-quality
and detailed data, and that’s why basketball is a great and
rich laboratory for statistical and mathematical study. This
research is motivated by the following question: can basket-
ball scoring be described by mathematics?

1



Figure 1.1: Average points scored per game from 1995 to 2019

In Figure 1.1 are shown the average points scored per game
in the last twenty-three years. My hypothesis is that such an
increase in points scored is given by a change in shot selec-
tion by teams and players.

Figure 1.2: Heat Map 2010-11 Season

In Figure 1.2 and 1.3 we have two heat maps from the
2010 and 2018 season. We divide the court in bins of size
1 foot squared, and count how many shots are taken inside
each bin. Notice that the distribution of shots has shifted ei-
ther close to the basket or outside the three point line. In
this paper we will mathematically describe why this change
happened. Understanding the effect of shot selection and in-
game decisions on a team’s performance is essential. Team
managers and coaches can use this information to make de-
cisions about which players to hire, for example, or deter-
mine optimal policies regarding playing style and team ten-
dencies.

Figure 1.3: Heat Map 2018-19 Season

1.3 Method

To answer this question, we analyze play-by-play data from
the 2009/10 to the 2018/19 season of the National Basket-
ball Association (NBA), as well as shooting data from 1999 to
2020 and additional data from the 2019/2020 College Divi-
sion I Men’s Basketball season. At first we proceed with an
initial exploratory analysis, confirming that two important
variables such as total points scored and margin between
teams follow a normal distribution. Then, we develop a logis-
tic regression model, where our null hypothesis is that shot
distance, game situation and shot characteristics do not in-
fluence the probability of making a basket. We will find that
we have enough evidence to reject the null hypothesis. We
will arrive at the conclusion that many variables have a nega-
tive relationship with making the shot, and we will conclude
this section with the making of a web application based on
the logit model, that given shot characteristics returns the
probability of making the shot. Given the fact that not every
shot is worth the same number of points, and utilizing the
model described above, we will find which shots are more ef-
ficient and will show how this insight has initiated a substan-
tial change in playing style in the last twenty years.

2 EDA (Exploratory Data Analysis)

Play-by-play data records every event that happens in a bas-
ketball game, such as shots, rebounds, turnovers, substitu-
tions and more. There are 30 teams and each one of them
plays a total of 82 regular season games. That makes a to-
tal of 1230 total games per season. On average, each team
attempts 84 shots per game. That makes more than 200,000
shots per season. Given that we are analyzing 10 seasons of
NBA basketball, we will work with more than 2 million ob-
servations. This kind of data is provided by BigDataBall[2],
where the reader can find detailed data for any major sport.

First, let’s observe total points scored per game. In Figure
2.1 we see the distribution of average points scored per game
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distribution. The red line is the normal distribution curve
with mean 101 points and standard deviation 10. Following
the 68-95-99 rule we can say that on average a team has 95%
chance of scoring between 81 and 121 points.

Figure 2.1: Average Points Scored Distribution

We can do the same process with the margin between two
teams after 48 minutes. In Figure 2.2 we take the score differ-
ence between home and away team after 48 minutes of game.
We notice two things different than before. There is a spike at
0 points and the mean is 2.1. The first one is because 11%
of NBA games end in overtime. When a team is down two
points with less than a minute in the game, it will shoot a two
pointer 70% of the time. The mentality here is to be safe first,
and worry about winning the game later. The latter is be-
cause of what we call ‘home court advantage’, which is given
by many reasons, such as home crowd/fans and not traveling
the day before the game.

Figure 2.2: Margin between home team and away team after 48
minutes

3 Logistic Regression

3.1 Method

I learned logistic regression in my econometrics studies. We
studied mortgage lending decisions at different banks and
we found traces of discrimination between white, black, and
Hispanic applicants. This type of regression is also used in
machine learning, many medical fields and social sciences,
where there is the need to find the relationship between a

categorical dependent variable and some independent vari-
ables, also called ‘predictors’. In our case, the dependent vari-
able will be if the basketball shot is made or not.

Let

z =β0 + β1 x1 + ...+βk xk (3.1)

where z is a transformation variable of our predictors xi

and their respective coefficients βi . For example, a one unit
increase in xi will represent a βi -unit increase in z . The re-
lationship between this variable z and the outcome is shown
in Figure 3.1 .

Figure 3.1: Fitting a line to a categorical variable will return proba-
bilities greater than 1 and smaller than 0.

Notice that if we try to fit the line p (z) = z then

lim
z→∞p =∞ lim

z→−∞p =−∞ (3.2)

And we know this is not possible, since p has to be
bounded between 0 and 1 .

To solve this, we use what we call a sigmoid function (Fig-
ure 3.2), which has the form

p (z) = 1

1+e−z (3.3)

Now we have that

lim
z→∞p = 1 lim

z→−∞p = 0 (3.4)

However, the relationship between the transformation
variable z and the outcome is not linear. In order to make
it so, we need two steps. First, we take the odds of the Sig-
moid function. If we let P A be the probability of the event A
to happen. Then

odd sA = P A

1−P A
(3.5)

which is the probability of the event happening over the
probability of not happening. For example, if on average I
make a free throw 80% of the times, the odds of making the
shot will be 0.8

0.2 which is equal to 4 to 1 odds of making the
shot.

Now let’s take the odds of the Sigmoid function.

odd s = p (z)

1−p (z)
=

1

1+e−z

1− 1

1+e−z

= ez (3.6)
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Figure 3.2: We use a Sigmoid Function so the probabilities are
bounder between 0 and 1

Looking at equation 3.6 we would expect an exponential
relationship between the predictors and the odds of making
a shot. In Figure 3.3 we compare the expected odds against
the actual odds of making a shot. In this study we will mainly
focus on shots between 0 and 30 ft, so we are satisfied with
this relationship.

Figure 3.3: Real odds of making a shot are taken from the real
shooting percentages, compared to what we would expect from the
logistic model

The next step is taking the logit transformation of the odds
which we define as the natural log of the odds. We already
know that odd s = ez then

log i t = `= ln(odd s) = ln
(
ez)= z (3.7)

In Figure 3.4 we see the linear relationship for both the ex-
pected and actual logit.

Then, the logit model will have the form:

log i t = `= ln
p

1−p
=β0 + β1 x1 + ...+βk xk (3.8)

Where ` is the log-odds and βk are the parameters of the
model, and xk the values taken by our independent variables.
A explained in ‘An introduction to Logistic Regression Analy-
sis and Reporting’(Peng et al., 2002 [10]), the value of the co-
efficients β determines the direction of the relationship be-
tween x and the logit of the dependent variable (Y ) . When β
is greater than zero, larger (or smaller) x values are associated
with larger(or smaller) logits of Y . On the other hand, if β is
less than zero, larger(or smaller) values of x are associated
with smaller(or larger) logits of Y .

Figure 3.4: Real log-odds of making a shot are taken from the real
shooting percentages, compared to what we would expect from the
logistic model

3.2 Define Variables

A number of different aspects of a shot could impact a
player’s chances of success. For example, at the end of a close
game, a player may be nervous and the pressure of the game
might impact his performance. Also, from personal expe-
rience the distance of the closest defender has a huge im-
pact on shooting accuracy. I chose to work with variables I
thought were more valuable in determining the probability
of making the shot. As we will see later in the paper, there are
other aspects of the game I decided to not include for differ-
ent reasons.

We associate the following varables to each shot:

• Shot made → binary
- made shot = 1
- missed shot = 0

• Shot distance → numeric
- distance from the basket in ft (min = 0, max = 96)

• Crunch situation → binary | =1 if less than 4 minutes
left in the game & margin <5 pts

• Shot Clock → factorized
- Early Shot when 18-24 seconds
- Regular Shot when 6-18
- Late Shot when <6 seconds

• Closest Defender → factorized
- Wide open if closest defender >10ft
- Open if closest defender 6-10 ft
- Contested if 3-6 ft - Forced if 0-3 ft

• Dribbles → factorized
- 0 dribbles
- 1-2 dribbles
- 3-5 dribbles
- 6+ dribbles

• Touchtime → factorized
- less than 1 second before shot
- 1-3 seconds
- 3-5 seconds - 5+ seconds

Why did we decide to not use continuous variables but to
factorize them? In economics the law of marginal utilities
states that as consumption increases the marginal utility de-
rived from each additional unit declines.

In Figure 3.6 we see a contour plot of the distance of the
closest defender. We notice diminishing marginal effects as
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Figure 3.5: Contour Plot of shot distance against defensive cov-
erage. The lines is black are the predicted probability of making
the shot. Notice that as distance of closest defender increase the
impact of the probability becomes smaller and smaller.

the distance increases. The difference in probability between
0 and 5 ft is 15 percentage points, while the difference be-
tween 20 and 25 is less than 5. From the perspective of a bas-
ketball player, having the defender attached to you or at 5 ft
makes a big difference because you are able to get the shot
off. On the other side, if the defender is at 25 ft rather than 20
ft, the shooter would barely notice the difference. A similar
case could be made for the other factor variables.

3.3 Models

3.3.1 Reduced Model

Let’s start with considering a reduced model with shot dis-
tance and crunch situation as predictors(Table 3.1).

Dependent variable:

FGM

(1) OR

SHOT DISTANCE −0.043∗∗∗ 0.958
(0.001)

CRUNCH −0.112∗∗∗ 0.894
(0.037)

Constant 0.406∗∗∗
(0.011)

Observations 119,320
Log Likelihood −80,177.650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.1: Reduced model. For space reasons, the full model table
can be found at the end of the paper.

From the sign of the coefficients we can say that there is a
negative relationship with making the shot. That is, as dis-
tance increases the logit will decrease. We use odds ratio

(OR) to compare the relative odds of making the shot across
two different groups.

We define

OR = odd s1

odd s0
(3.9)

where odd s1 are the odds of the group we are checking
and odd s0 the odds of the reference group. Let’s compare
the odds of making a crunch shot against a regular shot.
Let’s hold shot distance constant. We know that odd s =
eβ0+ β1·C RU NC H from equation 3.6 where β0 is the intercept,
β1 is the coefficient for crunch shot, and CRUNCH is a cate-
gorical variable that can take the value of 0 or 1. Then

OR = odd sC RU NC H

odd sREGU L AR
= eβ0+ β1

eβ0
= eβ1 (3.10)

Thus, to calculate the odds ratio of a variable with respect
to the reference group, we will exponentiate the respective
logit coefficient. An odds ratio of 0.894 means that on aver-
age, controlling for shot distance, shots taken in crunch time
situations have 10% lower odds of going in. For a continuous
variable like shot distance, we know that on average, for ev-
ery extra foot we go away from the basket, the odds of making
the shot decrease by 4.2% . However, differences in predicted
probabilities may be more meaningful than odds ratios.

Let’s find the predicted probability of making a shot taken
from 15 feet in a crunch time situation. We need our z value.
We have that

z =β0 + 15 ·β1 +1 ·β2 (3.11)

where β0 is the constant and β1 and β2 the coefficients
for shot distance and crunch situation respectively. Then,

z = 0.406−15 ·0.043−0.112 =−0.351 (3.12)

Then let’s substitute z into the Sigmoid function. We have

p (z) = 1

1+e−z = 1

1+e0.351 = 0.413 (3.13)

On average, a 15 ft shot in crunch time has a predicted
probability of going in of 41% . The effects of crunch time
are shown in Figure 3.6

Figure 3.6: The predicted effect of taking a shot in a crunch situa-
tion compared to a regular situation
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3.3.2 Full model

Every time we wish to add an independent variable to our
model we need to check for the assumption of little or no
multicollinearity. Multicollinearity problems consist of in-
cluding in the model different variables that have similar pre-
dictive relationships with the outcome. We first create a cor-
relation table (Figure 4.1) to see which variables could cause
problems.

Figure 3.7: Correlation Table between variables in the model.

We see that dribbles and touchtime are highly correlated,
which makes sense because for each extra dribble taken the
touch time before the shot increases. We need to check
if these two variables have similar predictive power in the
model. We calculate the Variance Inflation Factor (VIF).

High values signify that it is difficult to assess the contri-
bution of predictors to a model. A value greater than 5 is
generally considered bad and the solution is to not insert
touchtime in the model (Tables 3.2 and 3.3).

The full logit model is shown in Table 7.1. Notice that for
our factor variables we don’t include one of each. The ex-
cluded variables will represent our reference variable, which
will be a shot not in a crunch situation, between 6 and 18
seconds on the shot clock, wide open and with no dribbles.
The signs are as expected: there is a negative relationship
between shot distance and the logit of making a shot; same
thing with number of dribbles and defender distance. In ad-
dition, shooting and early shot is associated with higher like-
lihood of making a shot. Also, every coefficient is statistically
significant at the 0.01 level. Looking at odds ratios we can say
that on average, holding other variables constant, an open
shot (defender between 6-10 ft) has odds 11% lower of go-
ing in respect to a wide-open shot (10+ ft). For a forced shot
(0-2 ft) the odds are 59% lower than a wide open one. Let’s
find the probabilities as we did before. Let’s say two shots are
taken from 15ft. For the first one (1) the defender is at 8 ft
(open shot) and for the second one (2) at 2 ft (forced shot).
Then

z1 = 1.221−15 ·0.061−1 ·0.117 = 0.189

z2 = 1.221−15 ·0.061−1 ·0.880 =−0.574

When we plug in z1 and z2 into the Sigmoid function we
get

p1 = 0.547

p2 = 0.36

The defensive coverage effect is shown in Figure 4.2. We
could do the same comparison for other variables in the
model such as shot clock and dribbles. Some examples of
these variables’ effects on the probability of making the shot
are shown at the end of the paper (here and here). To calcu-
late the exact probabilities of different combinations of shot
characteristics, we would have to go through the same pro-
cess as before. If for example we let shots be between 0 and
40 ft, then we have 2 choices for crunch situations, 3 choices
for shot clock, 4 choices of defensive coverage and other 4
choices for number of dribbles. That makes a total of 3840
combinations. This is the reason why I developed a tool that
lets you find the probability of making the shot for any of
those combinations in less than 10 seconds. This application
was built using the R studio Shiny App functionality and can
be found at the following link and also in the reference sec-
tion. I invite the reader to open it and verify our calculation
above for an open and contested 15 feet shot.

Figure 3.8: The effects of different defensive coverage. If the player
is under the basket and the closest defender is at more than 10
feet away the expected probability is about 0.90. However, if the
defender is between 0 and 2 ft, the probability drastically drops at
0.50

4 Goodness of Fit

4.1 MLE

One more thing I wanted to understand during my research
was how the logic coefficients (β0,β1, . . . ,βk ) are calculated.
A logit model uses a maximum likelihood estimation (MLE).
This method is different from the ordinary least square esti-
mation in linear regression, where the model finds the best fit
by minimizing the distance between the observed value and
the regression line. This method would not be possible, since
as we saw in Section 3.1 we cannot fit a line on a categorical
variable.
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Variables Shot Distance CRUNCH Shot Clock Dribbles Touch time Defender Distance

VIF 1.597 1.003 1.072 7.389 7.536 1.592

Table 3.2: Variance Inflation Factor : all variables included

Variables Shot Distance CRUNCH Shot Clock Dribbles Defender Distance

VIF 1.595 1.004 1.038 1.039 1.590

Table 3.3: Variance Inflation Factor : touch time excluded

MLE selects the set of parameter estimates that give the
highest probability of obtaining the observed result. If we let

p(y = 1|~x) (4.1)

be the probability of making the shot given predictors x, then
we can say that

p(y = 0|~x) = 1−p(y = 1|~x) (4.2)

Then the likelihood function is given by

119,320∏
i=0

p(yi = 1|~x)y · [1−p(yi = 1|~x)]1−y (4.3)

Notice that the single terms of Eq 4.3 take the value of p(yi =
1|~x) if y = 1 and the value of 1− p(yi = 1|~x) if y = 0. For ex-
ample, if the predicted probability of making a shot was 0.75
and the shot was made, we would multiply by 0.75. However,
if the shot was missed, i.e. the model didn’t predict well, we
will multiply by 0.25. Since we have more than a hundred
thousand observations, the likelihood will be close to 0. For
mathematical convenience, we usually take the logarithm of
the likelihood. Since the likelihood function is bounded be-
tween 0 and 1, the log likelihood will always be a negative
number. The MLE finds the values of (β0,β1, . . . ,βk ) that
maximizes the log likelihood of a model.

4.2 Estimating goodness of model

How do we know that our logit model is accurate? Should we
be confident in it when estimating probabilities of making
the shot? We will conduct three different tests to measure the
goodness of our model.

1. Likelihood Ratio Test
2. McFadden Pseudo R2

3. TT test

The first two tests will use the likelihood function ex-
plained in Section 4.1 to assess the improvement of the full
model over the reduced model (LR test) and to find an index
analog to the R2 known in linear regression. The third test is
something less canonical, something I came up with to mea-
sure the precision of the model and possibly improve it. Fol-
lowing the unwritten rule of mathematics that everything has
to have a name, I called it with my nickname.

4.2.1 Likelihood Ratio Test

Absolute values of Log Likelihoods are not meaningful on
their own, since they depend on the sample size. However,
for a given sample size the smaller the absolute value the

better the fit. The Likelihood Ratio test is a hypothesis test
that assesses the difference in predictive power between two
nested models. In our case, we will test if the full model sig-
nificantly improves the reduced model. We define the LR test
value ( γLR ) as:

γLR = 2 · [log(L)| ˆβFull − log(L)| ˆβRed ] (4.4)

Where log(L)| ˆβFull is the log likelihood achieved at the
maximum likelihood estimates of the full model, and
log(L)| ˆβRed is the log likelihood achieved with the reduced
model. Professor Wilks in his paper The Large-Sample Distri-
bution of the Likelihood Ratio for Testing Composite Hypothe-
ses((Wilks, 1938) [11]) proves that this difference follows a χ
square distribution with q degrees of freedom, where q is the
number of variables left out in the model. Referring to Ta-
ble 7.1 at the bottom, we can see the log likelihoods of the
two models. Then we have

γLR = 2 · (−78,917.420+80,177.650)

γLR = 2520.46 q = 8

A critical value of 2350 with 8 degrees of freedom is statisti-
cally significant at the 0.01 level. Therefore, we have enough
evidence to reject the null hypothesis that the full model does
not improve the reduced one. Now we know that adding vari-
ables improved the predictive power of our model. Let’s keep
going with our testing.

4.2.2 McFadden Pseudo R2

In linear regression there is an index called R2 which assesses
what percentage of the variation in the dependent variable
can be explained by the predictors in the model. We can
transform the log-likelihood function into an analogous in-
dex. It’s called McFadden Pseudo R2, from the professor who
invented it, and it is defined as:

ρ2 = 1− log(L)| ˆβFull

log(L)|β̂0
(4.5)

Where log(L)| ˆβFull is the log likelihood achieved at the
maximum likelihood estimates, and log(L)|β̂0 is the log like-
lihood obtained on the null hypothesis being true, i.e. con-
sidering only the intercept.

The McFadden pseudo R2 is only one of numerous Pseudo
R squares we could choose. I preferred McFadden because
it’s straightforward and it lets us use the Likelihood function.
I encourage the reader to find more about this using the refer-
ence page at the end of the paper(reference). It is important
to know that these R squared tests come with limitations. In
fact, each one of them will give different results and for this
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reason they have to be treated carefully. We cannot inter-
pret his index as the classic linear regression R2. Even if it
appears to be a stable relationship between the two indices
(Figure 4.1)professor McFadden in the footnotes of his paper
Quantitative Methods for analyzing travel behavior for indi-
viduals ((McFadden, 1977)[8]) writes that “values of ρ2 tend
to be considerably lower than those of the R2." We can find
these values in Table 7.1. The reduced and full model have a
Pseudo R2 value of respectively 0.33 and 0.54. At page 35 in
McFadden paper the professor explains that values of .2 to .4
for ρ2 represent an excellent fit.

Therefore, we are satisfied with a value of 0.54, that follow-
ing Figure 4.1 could be compared to a standard R2 value of
0.8. Now, let’s proceed with our last test.

Figure 4.1: From McFadden’s paper ’Quantitative methods for ana-
lyzing travel beavior for individuals’. The relationship between the
two indexes appears to be stable, even though not entirely linear.
In fact, ρ2 tend to be lower.

4.2.3 TT test

We want to test the ability of the model to forecast observed
responses. In other words, to find how precise the model is at
predicting shot probabilities. On average a shot goes in 45%
of the times, so let’s classify a shot as made if its predicted
probability is at least 0.45. Let’s reference Table 4.3, where we
have 4 random observations from our data set. We can as-
sess the precision of the model by comparing the prediction
and the actual result. For example, the model predicted cor-
rectly the first observation but not the other three. Doing this
process with every observation in our data set (Table 4.4) we
get sensitivity = 0.54 and specificity = 0.62 , where sensitivity
is the true positive rate, that is how many times the model
predicted a made shot correctly, and specificity is the true
negative rate, that is how many times the model predicted
a missed shot as missed. We can combine these two values
and find that the precision of the model is 0.59, that is a cor-
rect prediction was made 59% of the time. The major limita-
tion of this process is that we are using the same threshold of
0.45 for every type of shot. This will lead to losses in preci-
sion, since for example shots from 1 ft are made 63% of the
time and from 35 feet only 15% of the time.

MISSED MADE
PREDICTED MISSED 29490 19232
PREDICTED MADE 17556 23212

Table 4.1: Four random observations and respective prediction.
With a threshold of 0.45 the model predicted the result right 1 time
out of 4

Let’s find the best threshold for every shot distance. As a
motivating example, we consider only shots taken from 4 feet
(Figure 4.2

Figure 4.2: Precision graph for 4 feet shots. On the x axis we have
every possible threshold we can choose from 0 to 1. On the y axis
we have the precision we would get if we used a specific threshold.
From this we can determine which threshold returns the highest
precision. In this case: 0.50

Before we calculated the precision of the model when our
threshold was 0.45. Now, we try every possible threshold
from 0.01 to 1, and plot it against the respective precision.
Doing so, we can figure out which threshold gives the high-
est precision. Figure 4.2 tells us we should use 0.50 instead
of 0.45, this will bump out precision for 4 ft shots by two per-
centage points. It is interesting what happens at the straight
lines. Among 4 feet shots, there is not a predicted probabil-
ity less than 0.37. If we choose any threshold between 0 and
0.37 we will classify every shot as made, since every predicted
probability will be higher than our threshold. By doing so, we
will get back the percentage of real makes. On the other side,
there is not a predicted probability higher than 0.75. There-
fore, if we choose a threshold of 0.75 or more, every shot will
be predicted as a miss, since there is not a predicted prob-
ability higher than our threshold. The results of doing this
process for every shot distance are shown in Figure 4.3.

FALSE TRUE
PREDICTED MISSED 40631 8091
PREDICTED MADE 26691 14077

Table 4.2: Four random observations and respective prediction.
With a threshold that varies with shot distance the model predicted
the result right 2 time out of 4

The graph tells us which threshold we should choose. For
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Figure 4.3: The same process as before is done for each shot dis-
tance, and the threshold which returns the highest precision is
plotted. In black we see the real shooting percentages for refer-
ence.

reference, the actual percentages were plotted in black. Let’s
analyze the same four observations as before, but this time
let’s use the threshold plot we just built. Observation 1 and
2 remain the same. Observation 3 however will have a dif-
ferent prediction. We just saw that 4 feet have a threshold of
0.50. Therefore, we will predict observation 3 as missed and
improve our model.

Doing this for every observation, we get sensitivity = 0.64
and specificity = 0.60 , precision = 0.61. Even though preci-
sion only improved by two percentage points, we see that
sensitivity, i.e. the ability of the model to predict shots made,
improved by ten percentage points. We are happy with this
improvement. However, one question could come to mind.

4.2.4 Why is the model not perfect?

The highest precision we can reach with this model is 61%.
Why can’t we do better? Limitations of the model play a huge
part. Particularly, the model doesn’t reflect an important fea-
ture of basketball players, which is talent. It turns out that the
model is great at predicting the probability of making a shot
of average players, but not for very good (or bad) players.

In Figure 4.4 we compare predicted makes and actual
makes of every NBA player during the 2014/2015 season. Pre-
dicted makes are calculated with the same procedure of Sec-
tion 4.2.3. There is a linear relationship between them, but
we have some outliers. It’s interesting that the players at the
top are some of the best players in the league. In fact, each
one of them has been selected for the all-star game, where
only the best 24 players in the NBA can play, at least once.
Let’s consider Chris Paul. The Los Angeles Clippers point
guard made more than 400 hundred baskets, the model only
predicted less than 100. What happened? Basketball fans
will know that Chris Paul is famous for hitting difficult shots.
The model predicted those shots as misses, because the av-
erage NBA player would miss them most of the time. Chris
Paul is not an average player, he’s elite! And his talent let him
make tough shots. The same thing can be said for other play-
ers such as Stephen Curry, James Harden, and Lebron James,
which have multiple MVP awards and will be remembered as

Figure 4.4: The same process as before is done for each shot dis-
tance, and the threshold which returns the highest precision is
plotted. In black we see the real shooting percentages for refer-
ence.

some of the best of all time.

5 Playing Strategy

5.1 Not every shot is worth the same

At the beginning we said that not every shot is worth the
same amount of points. Shots taken behind the three point
line are worth 50% more than those taken inside the arc. We
will show how this fact has influenced the playing strategy of
teams and players during the last ten NBA seasons. Only for
this section, we will not consider three point shots from cor-
ners. In fact, a corner 3 point shot in only 22 feet from the
basket, while a regular 3 pointer is 23.75 (Figure 5.1)

Figure 5.1: NBA court, notice that the three point line is not a
perfect arc, but for this section we will not consider corner threes

Given that in our data shot distance is given in the form of
integers, we define

EP = expected points

9



Distance Crunch Dribbles Defender Distance Shot Clock Result Probability Prediction

10 0 0 8 16 made 0.60 1
23 1 5 2 3 made 0.16 0
4 0 0 1 21 missed 0.49 1

25 1 0 5 12 made 0.37 0

Correct 1/4

Table 4.3: Four random observations and respective prediction. With a threshold of 0.45 the model predicted the result right 1 time out
of 4

Distance Crunch Dribbles Defender Distance Shot Clock Result Probability Prediction

10 0 0 8 16 made 0.60 1
23 1 5 2 3 made 0.16 0
4 0 0 1 21 missed 0.49 0

25 1 0 5 12 made 0.37 0

Correct 2/4

Table 4.4: Four random observations and respective prediction. With a threshold of 0.45 the model predicted the result right 1 time out
of 4

EP =
{

2 ·p(y = 1|~x) for 0 ≤ distance ≤ 24

3 ·p(y = 1|~x) otherwise
(5.1)

Figure 5.2: Predicted probability as a function of shot distance

In Figure 5.2 we see predicted probability of making the
shot in relation to shot distance. If we apply Equation 5.1 we
get Figure 5.3. We can tell that at some point shooting a two
becomes less efficient than shooting a three. Let’s find out
when. The model predicts:

2 · 1

1+e−β0+β1·x = 3 · 1

1+e−β0+β1·24
(5.2)

where β0 is our constant coefficient and β1 is the coeffi-
cient for shot distance. If we solve this with some algebra, we
find that at 7.3 feet from the basket, a two pointer becomes
less efficient than a three. For the scope of this section, when
we talk about three pointers we intend shots between 23 and
25 feet. After that, shots between 7 and 10 feet might still be
more efficient. Furthermore, attempts from 24 feet generate
1.10 points per shot. Shots between 0 and 7.3 feet generate
on average 1.13 point per shot, while shots between 7.3 and
22 feet generate on average 0.89 points per shot. Therefore, 0
to 7.3 and 23 to 25 are the most efficient spots to shoot from.
Someone could ask why not shooting only in the paint? If a
team did that, the defense would adjust and only stay in the

Figure 5.3: Predicted expected points as a function of shot distance

paint. At that point, the distance of closest defender would
always be less than 2 feet and we saw from the model how
that affects the probability of making the basket. As my coach
says, "the fear of the shot sets up the drive, and the fear of the
drive sets up the shot". The solution is a right balance be-
tween paint shots and threes.

5.2 Change in Behavior

At the beginning we saw that average points scored per game
have been increasing, and our hypothesis was that this in-
crease is due to a change in shot selection and playing strat-
egy. In the previous sections we saw that this hypothesis is
supported by a mathematical explanation. However, we still
have to verify what really happened during the last ten sea-
sons. Remember, we are trying to prove that teams have re-
acted to the fact that some shots are more efficient than oth-
ers, in particular that they have been using three point shots
more than midranges (10-20 ft).

In Figure 5.4 are shown the shooting rates of the last
10 NBA seasons. We notice a few things. During the 2015-
2016 season, three point shooting rate surpassed the mid
range shooting rate. At this pace 50% of the shots will be
threes by the 2025 NBA season. This boost could be ex-
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Figure 5.4: caption here

plained by players getting better at shooting threes, but this
is not the case. The three point percentage remains constant
through the years. Also, notice how paint shots, from 0 to 10
ft, remain constant as well. The only thing that changed is
shot selection!

Understanding the change in playing behavior may be eas-
ier with Figure 5.5

I invite the reader to start from the left side, with the 2009-
2010 season, and follow the bellies of the violin plot, which
become smaller and smaller at the mid range level.

5.3 Real Life Examples

5.3.1 Team

When analyzing this shift in shot selection I thought it could
be useful to have a tool that lets us visualize the shot selection
of different seasons, teams and players. That’s why I devel-
oped a second application. We already saw two examples of
this app in action at the beginning of the paper in Figure 1.2
but now let’s focus on teams and players. Note that the fol-
lowing are screenshots taken from the app, and I invite the
reader to play around with it and search their favorite player
(link).

Let’s consider the Houston Rockets and compare the 2009-
10 and 2018-2019 seasons. We already explained how the
heatmap works in Section 1.2, we divide the court in bins
of size 1 foot squared, and count how many shots are taken
inside that bin. In Figure 5.6 we have the 2009-10 Houston
Rockets. Notice how the midrange shot is still used in abun-
dance. The Rockets took 1819 midrange shots that season on
a total of 8945 shots, 20% of the shots. Now let’s take a look
at the 2018-19 Rockets in Figure 5.7. It looks like every mid
range shot from 10 year ago now is taken either in the paint or
outside the three point line. The Rockets shot 743 midranges
on a total of 10354 shots, 7% of the shots. In addition, the rea-
son why the Rockets took 16% more shots ten years later is
beyond the scope of this research, but they could be acceler-
ating their offense to shoot more quickly before the defense
has a chance to get set. This could be explained by the fact

that an early shot clock has a positive relationship with the
logit of making a shot, as shown by the coefficient in table 1.3
and by the shot clock effect plot in Figure 7.1

5.3.2 Players

We know that teams have changed their shot selection, and of
course this transition has to start from the individual players.
Let’s keep using our application and analyze how Stephen
Curry, a two times MVP and three times NBA champion, has
changed his shot selection through the years. We compare
his rookie season in 2009-10 to his last championship season
in 2017-2018 using density plots that work exactly as the vi-
olin plots we saw in Figure 5.5 In 2009 (Figure 5.8Stephen
Curry was fresh out of college, his playing style was not
evolved yet and he was taking a considerable number of mid
range shots: 458 out of 1343 total shots or 34% . During his
most recent championship campaign (Figure 5.9) Curry shot
only 316 midranges out of 2215 shots, which makes 14% . His
3 point shooting rate increased by almost 50% as he almost
completely eliminated shots between 10 and 20 feet.

However, there are some exceptions. In Section 5.1 we
showed that shots taken outside 7.3 feet become less effi-
cient, but we made this assumption by considering the pre-
dicted shooting percentage from our logit model. There are
players that are so good at shooting midranges that they do
not have to follow our model to be efficient. Let’s take for
example Kevin Durant, arguably the best player in the world
(Figure 5.10).

Durant shot an astonishing 52% between 10 and 20 feet
last season, compared to the 41% league average. This means
that on average Durant generates 1.04 points per shot from
the midrange area, which is far above the rest of the league
(see Figure 5.3). Knowing that Durant shot 35% from three,
which makes on average 1.05 points per shot, we could ar-
gue that he could only take midrange shots and maintain the
same level of efficiency.

To put this into perspective, these numbers are close to
Michael Jordan most efficient season ever. During his career,
Jordan won 5 MVP awards and 6 championships. He aver-
aged 30.12 points per game, which makes him the most pro-
lific scorer (per game) ever, and he was part of the 1996-97
Chicago Bulls team which won 72 games. Unfortunately, I
was unable to get data from that season.

In Figure 5.11 we have a shooting map made by NBA an-
alyst and best-selling author Kirk Goldsberry. Michael Jor-
dan’s was so good at every aspect of the game that no model
could describe what he used to do. Almost 60% of his shots
were midranges, which is almost unbelievable compared to
the 2019 Houston Rockets 7% . It would be interesting to
see how Jordan’s playing style would adapt in today’s play-
ing style. My guess is that he would continue to be one of
the greatest players of all time and be one of the exceptions,
together with Kevin Durant and other elite players.

5.4 Practice what you preach

After my freshman year of college basketball Seattle Univer-
sity adopted a completely different playing style. My coach
recognized the efficiency of certain shots. Every single day
we practiced taking only great shots, either close to the bas-
ket or outside the three point line. We believed so much in
this that we got to a point where players taking midrange
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Figure 5.5: Violin plot of each season from 2009-10 to 2018-2019.

Figure 5.6: Houston Rockets Season 2009-2010

shots were substituted because they were not following the
team philosophy. In Figure 5.12 we see Seattle U shot selec-
tion during the 2019-20 season. It looks similar to the Hous-
ton Rockets in Figure 5.7 where there are very few mid range
shots compared to paint shots and three pointers. Figure 5.13
shows my personal shot selection. This almost extreme play-
ing strategy increased my points scored per game by 60%.
Many other factors could have helped my scoring ability, but
this is an incredible result. It may look that during the season
I was doing mathematical research to find the most efficient

Figure 5.7: Houston Rockets Season 2018-2019

shots!

6 Conclusion

The model presented today comes with some limitations. As
briefly mentioned before, it does not take in account play-
ers’ talent. This could be solved by factoring and making
each player a dummy variable. I tried but having hundreds
of names did not help, and also many of the coefficients be-
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Figure 5.8: Stephen Curry Season 2009-2010.

Figure 5.9: Stephen Curry Season 2016-2017

came not statistically significant. We could consider just a
few players, but then the problem is choosing who and how
many. A solution could be to create just one categorical vari-
able, that takes the value of 1 if the player is in the top 25 and
0 if he’s not.

Further, another issue is that we don’t account for the type
of shot, for example if it was a jump shot, a hook shot, a dunk,
etc. When this was tried the model started having statistical
significance issues, and I preferred to stick with the variables
we encountered in the paper. I believe all this could be great
material for future research, together with many topics I did
not have the time (or the space) to cover. Just to give a few
examples, we did not discuss in depth the effects of a faster
pace on the game. Teams are shooting more threes and play-
ing faster, and this seems to be a deadly combination that
will lead to a steady increase in average points scored per
game. In addition, proving that shots outcome are indepen-
dent from each other and the ‘hot hand phenomenon’ does
not exist would give me enough material for a second Senior
Research. Also, we haven’t covered the exciting topic of late
game decisions. We saw that teams tend to shoot more twos
when down two points at the end of games, but we stopped
there. An extensive research on this particular aspect of the
game is something I would love to do in the future.

7 Additional Material

In this section we provide extra material and articles in case
the reader wants to expand covered covered in the paper. In
Figure 7.1 we have the effects of shooting an early shot, reg-
ular shot, or late shot. Notice that from 0 to around 25 feet, a
shot in the first 6 seconds of the shot-clock is more likely to go
in. This is confirmed by the coefficient for early shot, which
is the only one that has a positive relationship with the logit

Figure 5.10: Kevin Durant Season 2018-2019

Figure 5.11: Houston Rockets Season 2018-2019

of making the shot.

In 7.2 we have the effect plot of two variables: defender
distance and number of dribbles. The best combination we
have is a shot from under the basket, with zero dribbles and
the nearest defender at more than ten feet. However, we are
still not certain that the shot will go in. Even the best players
on the planet will miss the easiest shots in basketball some-
times. To conclude, I wanted to say that if the reader has any
doubts, questions, or comments to please email me at my
school address. I’ll be more than happy to discuss my work
with you.

One thing I wanted to share is how I managed to draw a
basketball court in R. The process is incredibly complex, and
I wouldn’t have been able to do it without the help of data
analyst Ewen Gallic. The reader can find his guide here [4].

Even though I coded my apps from scratch, I got my in-
spiration from a different NBA Shot Visualization tool pro-
grammed by Peter Beshai. It’s way more advanced than mine
and the reader can find here [6].

As mentioned in the paper, I learned logistic models in
my Econometrics class taught by professor Hiedemann. The
course is part of the Ecnomics studies, but I strongly reccom-
mend it as elective even for math majors.

Finally, for anyone who’s interested in learning more about
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Figure 5.12: Seattle University Season 2019-2020

Figure 5.13: Mattia Da Campo (Seattle University) Season 2019-
2020

R squared in non-linear regressions, I recommend looking
into this guide made by the UCLA statistics department. [9]

Figure 7.1: Shot Clock effects on the probability of making the
shot.

Figure 7.2: Defensive coverage and number of dribbles effects.
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Dependent variable:

FGM

(1) OR (3) OR

SHOT DISTANCE −0.043∗∗∗ 0.958 −0.061∗∗∗ 0.941
(0.001)

CRUNCH −0.112∗∗∗ 0.894 −0.085∗∗ 0.919
(0.037)

EARLY SHOT 0.194∗∗∗ 1.215
(0.016)

LATE SHOT −0.170∗∗∗ 0.844
(0.017)

OPEN −0.117∗∗∗ 0.890
(0.036)

CONTESTED −0.389∗∗∗ 0.678
(0.034)

FORCED −0.880∗∗∗ 0.414
(0.038)

1-2 DRIBBLES −0.272∗∗∗ 0.762
(0.015)

3-5 DRIBBLES −0.318∗∗∗ 0.728
(0.019)

6+ DRIBBLES −0.286∗∗∗ 0.752
(0.020)

Constant 0.406∗∗∗ 1.221∗∗∗
(0.011) (0.038)

Observations 119,320 119,320 119,320 119,320
Log Likelihood −80,177.650 −80,177.650 −78,917.420 −78,917.420
McFadden R2 0.338 0.546

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.1: Reduced and Full model. This table is discussed in the sections above
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